FISEVIER

Contents lists available at ScienceDirect

### **Bioorganic & Medicinal Chemistry**

journal homepage: www.elsevier.com/locate/bmc



## Synthesis and evaluation of stilbene derivatives as a potential imaging agent of amyloid plaques

Myeng Chan Hong <sup>a,c</sup>, Yun Kyung Kim <sup>b,f</sup>, Jae Yong Choi <sup>d</sup>, Si Qiang Yang <sup>e</sup>, Hakjune Rhee <sup>c</sup>, Young Hoon Ryu <sup>d</sup>, Tae Hyun Choi <sup>a</sup>, Gi Jeong Cheon <sup>a</sup>, Gwang Il An <sup>a</sup>, Hye Yun Kim <sup>g</sup>, Youngsoo Kim <sup>g</sup>, Dong Jin Kim <sup>g</sup>, Jun-Seok Lee <sup>b,f</sup>, Young-Tae Chang <sup>b,e,\*</sup>, Kyo Chul Lee <sup>a,\*</sup>

#### ARTICLE INFO

#### Article history: Received 29 December 2009 Revised 10 June 2010 Accepted 15 June 2010 Available online 19 June 2010

Keywords: Alzheimer's disease (AD) β-Amyloid peptide (Aβ) Fluorescence imaging probe

#### ABSTRACT

Fluorescence probes that can detect A $\beta$  ( $\beta$ -amyloid peptide) plaque are important tools for diagnosis of Alzheimer's disease (AD), and 4-N-methylamino-4'-hydroxystilbene (SB-13) is one of the promising candidate molecules. We report here the synthesis of SB-13 derivatives that consist of various electron donating/withdrawing moieties and distinct size of N-substituents. The synthesized compounds were screened for detection of A $\beta$ 40 fibrils in vitro. Four compounds exhibited more than sixfold intensity increase, and they were further analyzed for detail bindings and A $\beta$  plaque imaging. Among these molecules, compound 42 meets two critical requirements for imaging agent; high fluorescence responsiveness and strong binding affinity. This compound showed more than 25-fold increase with the dissociation constant of 1.13  $\pm$  0.37  $\mu$ M. In AD mouse brain tissue, 42 selectively stained A $\beta$  plaque, more specifically peripheral regions of A $\beta$  plaque. This finding demonstrated its potential use as brain-imaging agents for AD studies.

#### 1. Introduction

Alzheimer's disease (AD) is a common neurological disease of chronic dementia, memory loss, and cognitive impairment. Central to the neuropathology of AD is the deposition of polymeric peptide/protein deposits, composed of  $\beta$ -amyloid peptide (A $\beta$ ) and tau protein.<sup>1</sup> The fibrillar aggregates of amyloid peptides, Aβ40 and Aβ42, are major metabolic peptides derived from amyloid precursor protein found in senile plaques and cerebrovascular amyloid deposits in AD patients.<sup>2</sup> For these reasons, an effective detection of AB plaques will be an important tool for AD diagnosis. 3,4 The AB imaging probes have been provided a way for monitoring Aβ plaque burden following the disease progression. Several <sup>11</sup>C-, <sup>18</sup>F- and <sup>123</sup>I-labeled tracers, such as benzothiazole derivative, 6-OH-BTA-1 ([N-methyl-] 2-(4'-methylaminophenyl)-6-hydroxybenzothiazole, <sup>11</sup>C), stilbene derivative, SB-13 (4-N-methylamino-4'-hydroxystilbene, <sup>11</sup>C) FDDNP (2-(1-{6-[(2-[<sup>18</sup>F]fluoroethyl)(methyl)amino]2-naphthyl}ethylidene)malononitrile, <sup>18</sup>F) have been reported for positron emission tomography (PET) imaging of A $\beta$  plaques in AD patients. Also, IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2-a]pyridine) and TZDM (2-[4'-dimethylaminophenyl]-6-iodobenzothiazole) for radio-iodinated probes have been reported for single-photon emission computed tomography (SPECT) imaging. 5-14 Among them, stilbene derivatives showed a broad range of biological responses such as anti-leukemic, anti-bacterial, anti-fungal, anti-platelet aggregation, coronary vasodilator activities and anti-cancer activities. SB-13 is one of the promising lead compound for A $\beta$  plaque detection, however, its application has been limited in PET imaging due to its strong binding affinity to amyloid aggregates and low fluorescence responses. C-16 In this report, we describes systematic modification of SB-13 and their biological assays to discover a fluorescence turn-on sensor using A $\beta$ 40 fibrils and AD mouse brain sections (Fig. 1).

Figure 1. Structure of the lead compound SB-13.

<sup>&</sup>lt;sup>a</sup> Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, 215-4, Seoul 139-706, Republic of Korea

<sup>&</sup>lt;sup>b</sup> Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore

Department of Chemistry and Applied Chemistry, Hanyang University, 1271 Sa-3-Dong Sanrgok-Gu, Ansan, Kyunggi-Do 426-791, Republic of Korea

d Department of Nuclear Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 612 Eonjuro, Kangnam-Gu, Seoul 135-720, Republic of Korea

e Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A\*STAR), Biopolis, Singapore 138667, Singapore

Life/Health Division, Integrated Omics Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea

g Life/Health Division, Neuro-medicine Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea

<sup>\*</sup> Corresponding authors. Tel.: +82 2 970 1369; fax: +82 2 970 2409 (K.C.L.); tel.: +65 6516 6774; fax: +65 6779 1691 (Y.-T.C.).

E-mail addresses: chmcyt@nus.edu.sg (Y.-T. Chang), kyochul@kirams.re.kr (K.C. Lee)

#### 2. Results and discussion

#### 2.1. Chemical synthesis

The stilbene derivatives (13-44) were prepared by a Wadsworth–Emmons reaction with preference of *trans*-stilbenes as products (Scheme 1).<sup>17</sup> Various diethyl phosphates derivatives (1-12) were prepared in high yield by the condensation of bromo benzyl derivatives and triethyl phosphite at 80 °C for 17 h. *N*,*N*-Dimethyl stilbene derivatives (13-24) were prepared conjugation of diethyl phosphates derivatives (1-12) and 4-(dimethylamino)benzaldehyde using sodium hydride, giving the desired products with 8-95% yields.

Other stilbene derivatives (**25–41**) were also prepared in a similar manner by conjugation of diethyl phosphates derivatives (**1–12**) with 4-(*N*-methyl-*N*-2-hydroxyethyl) benzaldehyde or 4-(*N*-methyl-*N*-2-cyanoethyl) benzaldehyde giving the products with 20–48% yields. While most of the products were obtained as expected structures, we observed hydrolyzed products from three reactions with 4-(*N*-methyl-*N*-2-cyanoethyl) benzaldehyde (**42–44**). Among 32 stilbene derivatives, 22 compounds are newly reported in Table 1).

#### 2.2. Screening against Aß plaques and AD mouse brain

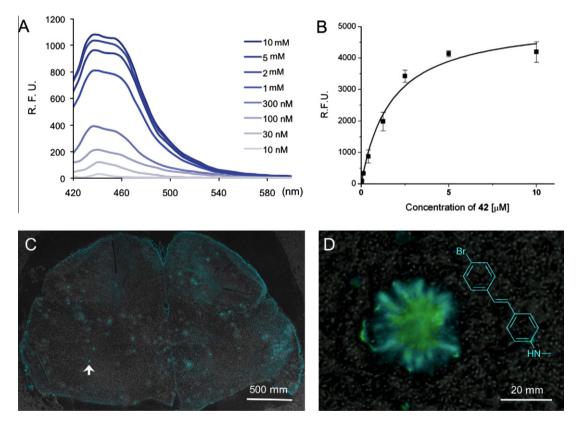
The synthesized 32 stilbene derivatives were tested with synthetic A $\beta$ 40 aggregates for their fluorescence response. Among tested 32 compounds, four compounds showed over sixfold increase at 30  $\mu$ M concentrations of A $\beta$ 40 fibril and further tested for their binding constants against A $\beta$ 40. The spectroscopic properties of selected compounds were summarized in Table 2. Promisingly, one of the compounds, compound **42**, meets two critical requirements for fluorescence imaging probe; high fluorescence responsiveness ( $F_{A\beta}/F_0$ >25-fold) and strong binding affinity (1.13 ± 0.37  $\mu$ M). Compared with the conventional A $\beta$  probes, compound **42** exhibited stronger bindings than ThT ( $K_D$  = 2.3  $\mu$ M,

**Table 1**Decoding table of compounds; \*marked stilbene compounds are reported here first time

| Compound | R <sub>1</sub> | $R_2$ | Compound    | R <sub>1</sub> | R <sub>2</sub> |
|----------|----------------|-------|-------------|----------------|----------------|
| 1        | I              |       | 23          | XI             | Α              |
| 2        | II             |       | 24          | XII            | Α              |
| 3        | III            |       | 25*         | X              | В              |
| 4        | IV             |       | <b>26</b> * | X              | C              |
| 5        | V              |       | <b>27</b> * | XI             | В              |
| 6        | VI             |       | <b>28</b> * | XI             | C              |
| 7        | VII            |       | <b>29</b> * | XII            | В              |
| 8        | VIII           |       | <b>30</b> * | XII            | C              |
| 9        | IX             |       | 31*         | VII            | В              |
| 10       | X              |       | <b>32</b> * | VII            | C              |
| 11       | XI             |       | <b>33</b> * | VIII           | В              |
| 12       | XII            |       | 34*         | VIII           | C              |
| 13*      | I              | Α     | 35*         | IX             | В              |
| 14       | II             | Α     | 36*         | IX             | C              |
| 15       | III            | Α     | <b>37</b> * | I              | В              |
| 16       | IV             | Α     | 38*         | III            | В              |
| 17*      | V              | Α     | <b>39</b> * | IV             | В              |
| 18       | VI             | Α     | <b>40</b> * | IV             | C              |
| 19*      | VII            | Α     | 41*         | VI             | В              |
| 20       | VIII           | Α     | 42*         | IX             | D              |
| 21       | IX             | Α     | 43*         | I              | D              |
| 22       | Х              | Α     | 44          | II             | D              |

 $F_{A\beta}/F_0$  >111) and higher fluorescence emission increment than BTA-1 ( $F_{A\beta}/F_0$  = 4.1,  $K_D$  = 0.30  $\mu$ M) in our measurement.

Encouraged by these outstanding properties, we further tested the applicability of compound **42** in the fluorescence tissue imaging using AD mouse brain sections. As compound **42** displays blue fluorescence, ThT (green) was used for counter staining of amyloid plaques. Compound **42** specifically stained at A $\beta$  plaque sites and showed good colocalization with ThT-labeling in 98 plaques assayed in two brain sections (Fig. 2C). It is also noteworthy that compound **42** stains slightly broader regions than ThT and it is better imaging


Scheme 1. Reaction scheme for synthesis of stilbene derivatives. Reagents and conditions: (a) triethylphosphite, 80 °C, 17 h; (b) NaH, benzaldehyde (4-(dimethylamino)benzaldehyde, 4-(N-methyl-N-2-hydroxyethyl) benzaldehyde, or 4-(N-methyl-N-2-cyanoethyl) benzaldehyde), THF, 80 °C, 5 h.

**Table 2**Structure and properties of primary hit compounds from in vitro screening

| Code | Structure            | $\lambda_{\rm ex}$ (nm) | λ <sub>em</sub> (nm) | Fold $(F_{A\beta}/F_0)^a$ | $K_{\rm D}$ (mean ± SD) $(\mu m)^{\rm b}$ |
|------|----------------------|-------------------------|----------------------|---------------------------|-------------------------------------------|
| 33   | BrOH                 | 350                     | 450                  | 8.91                      | 2.89 ± 2.42                               |
| 35   | Br—NOH               | 350                     | 440                  | 15.7                      | 1.84 ± 0.95                               |
| 42   | Br—NH                | 350                     | 440                  | 25.8                      | 1.13 ± 0.37                               |
| 44   | H <sub>3</sub> CO NH | 350                     | 440                  | 9.30                      | 17.9 ± 7.66                               |

<sup>&</sup>lt;sup>a</sup> Fold changes values were calculated using fluorescence emission intensity at  $\lambda_{em}$  of each dye (10  $\mu$ M dye and 30  $\mu$ M amyloid fibril were used for fold change measurement).

b A non-linear regression analysis was performed in GraphPad Prism fitting a one-site binding model to the binding data (5 replication experiments, N = 5).



**Figure 2.** A fluorescent imaging probe for Aβ plaque. (A) Fluorescence spectra of compound **42** with Aβ40 fibril. (B) Non-linear regression analysis at emission maxima (440 nm). The apparent dissociation constant,  $K_D$ , was determined to be 1.13 ± 0.37 μM. (C) Labeling of amyloid deposits in a AD mouse brain section with compound **42** (cyanine) and (D) A magnified image of an amyloid deposit labeled with compound **42** (cyanine) and ThT (green).

agent than ThT for peripheral regions of  $A\beta$  plaque (Fig. 2D). Therefore, we believe it would be a useful imaging tool for AD study.

#### 3. Conclusions

We synthesized 32 stilbene derivatives of the  $A\beta$  plaque ligand, SB13, and identified compound **42**, which exhibited a strong fluo-

rescence response (over 25-fold) and binding affinity (1.13  $\mu M)$  to A $\beta$ 40 aggregates. Compound **42** demonstrated its excellent capability of imaging A $\beta$  fibrils in AD mouse brain with good colocalization with ThT. Based on their delicately high binding affinity to A $\beta$ 40 aggregates, this novel stilbene analogue can be a good alternative candidate for a fluorescence imaging agent to study Alzheimer's disease.

#### 4. Experimental

#### 4.1. Chemistry

#### **4.1.1.** General

Solvents and starting materials for synthesis were purchased from Aldrich and used as received without purification. <sup>1</sup>H NMR spectra were recorded on Bruker Advance (<sup>1</sup>H NMR: 300 MHz) spectrometer, and chemical shifts are reported in parts per million downfield from internal tetramethylsilane. Mass spectra were recorded on a JEOL, JMS-AX505WA and melting points were determined on a Barnstead International 1002D.

#### 4.1.2. Preparation of diethylphosphonomethyl-benzene (1–12)

Benzyl bromide derivatives (3.35 mmol) were added to triethylphosphite (2.57 mmol) in the 50 mL round bottom flask at room temperature. The reaction mixture was heated to 80 °C for 17 h. After cooling to room temperature, the resulting crude product was fractional distillated to remove triethylphosphite in vacuo. Purification by silica gel column chromatography (70% EtOAc/hexane) gave a product as colorless oil.

- **4.1.2.1. 2-Methoxy-1-diethylphosphonomethyl-benzene (1).** Yield: 80%;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.31 (m, 1H), 7.22 (m, 1H), 6.89 (m, 2H), 4.02 (m, 4H), 3.83 (s, 3H), 3.25 (d, J = 21.7 Hz, 2H), 1.23 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 157.15, 131.19, 128.12, 120.51, 120.19 (J = 7.7 Hz), 110.50, 61.86 (J = 6.4 Hz), 55.43, 26.61 (J = 137.9 Hz), 16.30 (J = 5.6 Hz); HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for C<sub>12</sub>H<sub>19</sub>H<sub>4</sub>P: 259.1099. Found: 259.1098 (-0.6 ppm deviation).
- **4.1.2.2. 3-Methoxy-1-diethylphosphonomethyl-benzene (2).** Yield: 95%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.21 (m, 1H), 6.87 (m, 2H), 6.79 (m, 1H), 4.01 (m, 4H), 3.80 (s, 3H), 3.13 (d, J = 21.6 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 159.51 (J = 2.8 Hz), 132.90 (J = 8.9 Hz), 129.34 (J = 2.6 Hz), 122.05 (J = 6.6 Hz), 115.18 (J = 6.4 Hz), 112.40 (J = 3.3 Hz), 62.00 (J = 6.7 Hz), 55.05, 33.69 (J = 137.3 Hz), 16.26 (J = 6.0 Hz); HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for  $C_{12}H_{19}H_4P$ : 259.1099. Found: 259.1097 (-0.9 ppm deviation).
- **4.1.2.3. 4-Methoxy-1-diethylphosphonomethyl-benzene (3).** Yield: 94%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.22 (d, J = 2.4 Hz, 1H), 7.19 (d, J = 2.4 Hz, 1H), 6.84 (d, J = 8.1 Hz, 2H), 4.00 (m, 4H), 3,78 (s, 3H), 3.08 (d, J = 21.0 Hz, 2H), 1.24 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 158.52 (J = 3.3 Hz), 130.71 (J = 6.5 Hz), 123.40 (J = 9.2 Hz), 13.96 (J = 2.6 Hz), 62.03 (J = 6.8 Hz), 55.21, 32.74 (J = 138.2 Hz), 16.37 (J = 5.9 Hz); HRMS (FAB\*, M-nitrobenzylalcohol): Calcd for  $C_{12}H_{19}H_4P$ : 259.1099. Found: 259.1096 (J = 1.3 ppm deviation).
- **4.1.2.4. 2-Fluoro-1-diethylphosphonomethyl-benzene (4).** Yield: 92%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.36 (m, 1H), 7.22 (m, 1H), 7.07 (m, 2H), 4.05 (m, 4H), 3.20 (d, J = 21.1 Hz, 2H), 1.25 (t, 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 160.82 (J = 244.7 Hz), 131.81 (J = 4.4 Hz), 128.67, 124.11 (J = 3.2 Hz), 119.11, 115.31, 62.18 (J = 6.6 Hz), 27.18 (J = 139.7 Hz), 16.29 (J = 6.1 Hz); HRMS (FAB<sup>+</sup>, M-nitrobenzylalcohol): Calcd for C<sub>11</sub>H<sub>16</sub>FO<sub>3</sub>P: 247.0899. Found: 247.0903 (+1.4 ppm deviation).
- **4.1.2.5. 3-Fluoro-1-diethylphosphonomethyl-benzene (5).** Yield: 96%;  ${}^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.28 (m, 1H), 7.03 (m, 3H), 4.03 (m, 4H), 3.13 (d, J = 21.6 Hz, 2H), 1.25 (t, J = 7.1 Hz, 6H);  ${}^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 162.71 (J = 244.6 Hz), 134.03, 129.92 (J = 8.1 Hz), 125.46 (J = 3.9 Hz), 116.70, 113.86 (J = 20.9 Hz), 62.20 (J = 6.7 Hz), 33.54 (J = 137.9 Hz), 16.32 (J = 5.9 Hz); HRMS (FAB $^{+}$ ,

m-nitrobenzylalcohol): Calcd for  $C_{11}H_{16}FO_3P$ : 247.0899. Found: 247.0900 (+0.1 ppm deviation).

- **4.1.2.6. 4-Fluoro-1-diethylphosphonomethyl-benzene (6).** Yield: 98%;  $^1\text{H}$  NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.05 (m, 2H), 6.77 (m, 2H), 3.79 (m, 4H), 2.89 (d, J = 21.3 Hz, 2H), 1.01 (t, J = 7.1 Hz, 6H);  $^{13}\text{C}$  NMR (75 MHz, CDCl<sub>3</sub>): 161.58 (J = 243.8 Hz), 130.56, 126.76, 114.54, 61.29 (J = 6.7 Hz), 32.46 (J = 138.2 Hz), 15.42; HRMS (FAB<sup>+</sup>, M-nitrobenzylalcohol): Calcd for  $C_{11}H_{16}FO_3P$ : 247.0899. Found: 247.0900 (+0.1 ppm deviation).
- **4.1.2.7. 2-Bromo-1-diethylphosphonomethyl-benzene (7).** Yield: 93%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.56 (d, J = 8.0 Hz, 1H), 7.46 (m, 1H), 7.27 (m, 1H), 7. 11 (m, 1H), 4.05 (m, 4H), 3.41 (d, J = 21.9 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 132.89 (J = 2.9 Hz), 131.84 (J = 8.9 Hz), 131.62 (J = 5.0 Hz), 128.45 (J = 3.5 Hz), 127.43 (J = 3.3 Hz), 124.85 (J = 8.8 Hz), 62.20 (J = 6.6 Hz), 33.39 (J = 138.1 Hz), 16.30 (J = 6.0 Hz); HRMS (FAB\*, M-nitrobenzylal-cohol): Calcd for M Clark M 16.30 (M = 6.0 Hz); HRMS (FAB\*, M 207.0100 (+0.5 ppm deviation).
- **4.1.2.8. 3-Bromo-1-diethylphosphonomethyl-benzene (8).** Yield: 93%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (m, 1H), 7.39 (m, 1H), 7.23 (m, 1H), 7.19 (m, 1H), 4.03 (m, 4H), 3.11 (d, J = 21.7 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 133.98 (J = 8.8 Hz), 132.68 (J = 6.7 Hz), 129.98 (J = 3.2 Hz), 128.39 (J = 3.9 Hz), 122.39 (J = 3.5 Hz), 62.22 (J = 6.7 Hz), 33.38 (J = 137.6 Hz), 16.33 (J = 5.9 Hz); HRMS (FAB\*, M-nitrobenzylalcohol): Calcd for C<sub>11</sub>H<sub>16</sub>BrO<sub>3</sub>P: 307.0099. Found: 307.0108 (+0.3 ppm deviation).
- **4.1.2.9. 4-Bromo-1-diethylphosphonomethyl-benzene (9).** Yield: 93%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (d, J = 7.9 Hz, 2H), 7.04 (dd, J = 8.3 Hz, 2.5 Hz, 2H), 4.0 (m, 4H), 3.08 (d, J = 21.7 Hz, 2H), 1.25 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 137.58 (J = 2.9 Hz), 131.69 (J = 6.5 Hz), 131.41 (J = 9.1 Hz), 92.31 (J = 4.7 Hz), 62.20 (J = 6.7 Hz), 33.35 (J = 137.6 Hz), 16.36 (J = 5.9 Hz); HRMS (FAB<sup>+</sup>, m-nitrobenzylal-cohol): Calcd for C<sub>11</sub>H<sub>16</sub>BrO<sub>3</sub>P: 307.0099. Found: 307.0090 (-2.9 ppm deviation).
- **4.1.2.10. 2-lodo-1-diethylphosphonomethyl-benzene (10).** Yield: 92%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.84 (d, J = 8.0 Hz, 1H), 7.47 (m, 1H), 7.30 (m, 1H), 6.92 (m, 1H), 4.05 (m, 4H), 3.41 (d, J = 22.0 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 139.39 (J = 2.9), 135.10 (J = 8.7 Hz), 130.41 (J = 5.0 Hz), 128.31 (J = 3.5 Hz), 128.06 (J = 3.2 Hz), 101.04 (J = 9.3 Hz), 61.99 (J = 6.75 Hz), 38.08 (J = 137.5 Hz), 16.12 (J = 6.0 Hz); HRMS (FAB\*, M-nitrobenzylalcohol): Calcd for  $C_{11}H_{16}IO_{3}P$ : 354.9960. Found: 354.9965 (+1.4 ppm deviation).
- **4.1.2.11. 3-lodo-1-diethylphosphonomethyl-benzene (11).** Yield: 91%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 (m, 1H), 7.59 (m, 1H), 7.29 (m, 1H), 7.05 (t, J = 7.8 Hz, 1H), 4.03 (m, 4H), 3.08 (d, J = 21.7 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 137.99 (J = 6.6 Hz, 135.32 (J = 3.6 Hz), 133.57 (J = 9.1 Hz), 129.62 (J = 3.0 Hz), 128.51 (J = 6.3 Hz), 93.73 (J = 3.6 Hz), 61.63 (J = 6.7 Hz), 32.62 (J = 137.3 Hz), 15.86; HRMS (FAB\*, M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M = M =
- **4.1.2.12. 4-lodo-1-diethylphosphonomethyl-benzene (12).** Yield: 98%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 8.3 Hz, 2H), 4.01 (m, 4H), 3.07 (d, J = 21.7 Hz, 2H), 1.24 (t, J = 7.1 Hz, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 137.20 (J = 2.6 Hz), 131.39 (J = 6.5 Hz), 131.10 (J = 9.2 Hz), 92.02 (J = 4.6 Hz), 61.82 (J = 6.6 Hz), 32.97 (J = 137.3 Hz), 16.09 (J = 5.9 Hz); HRMS (FAB\*, m-nitrobenzylal-cohol): Calcd for C<sub>11</sub>H<sub>16</sub>IO<sub>3</sub>P: 354.9960. Found: 354.9960 (+0.1 ppm deviation).

#### 4.1.3. Preparation of styrylbenzene derivatives (13-44)

A sodium hydride (60 w/w, 4.70 mmol) was added to the mixture of diethylphosphonomethyl-benzene derivatives (**1–12**) and 4-(dimethylamino)benzaldehyde or 4-(*N*-methyl-*N*-2-hydroxyethyl)benzaldehyde or 4-(*N*-methyl-*N*-2-cyanoethyl)benzaldehyde in dry THF (30 mL). The reaction mixture was refluxed for 5 h and cooled to room temperature. The crude product was quenched by adding water (2 mL), followed by evaporation of solvent in vacuo. Purification by silica gel column chromatography (16% EtOAc/hexane) gave a product as yellow colored powder.

- **4.1.3.1. 4-N,N-Dimethyl-2'-methoxy-stilbene (13).** Yield: 17%; mp 87.4–88.6 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.58 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 8.6 Hz, 2H), 7.29 (d, J = 16.6 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.05 (d, J = 16.4 Hz, 1H), 6.96 (d, J = 7.4 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.71 (d, J = 8.6 Hz, 2H), 3.88 (s, 3H), 2.95 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 156.53, 149.98, 129.22, 127.64, 127.59, 127.28, 126.53, 125.84, 120.71, 119.06, 112.44, 110.88, 55.52, 40.51; HRMS (FAB<sup>+</sup>, m-nitrobenzylalcohol): Calcd for  $C_{17}H_{20}NO$ : 253.1467. Found: 253.1466 (-0.3 ppm deviation).
- **4.1.3.2. 4-N,N-Dimethyl-3'-methoxy-stilbene (14).** Yield: 95%; mp 90.2–91.3 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (m, 2H), 7.25 (m, 2H), 7.08 (m, 1H), 7.02 (s, 1H), 6.89 (d, J = 16.2 Hz, 1H), 6.75 (m, 3H), 3.85 (s, 3H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 159.82, 150.12, 139.63, 129.48, 129.09, 127.59, 125.57, 124.19, 118.76, 112.38, 111.13, 55.19, 40.43; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for  $C_{17}H_{20}NO$ : 253.1467. Found: 253.1465 (-0.7 ppm deviation).
- **4.1.3.3. 4-N,N-Dimethyl-4**′-**stilbene (15).** Yield: 20%; mp 171.9–173.4 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (t, J = 8.1 Hz, 4H), 6.89 (m, 4H), 6.72 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H), 2.94 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 158.66, 149.92, 131.05, 127.27, 127.15, 126.82, 126.22, 124.06, 114.07, 112.57, 55.33, 40.55; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for  $C_{17}H_{20}NO$ : 253.1467. Found: 253.1461 (-2.2 ppm deviation).
- **4.1.3.4. 4-N,N-Dimethyl-2'-fluoro-stilbene (16).** Yield: 57%; mp 122.8–123.7 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 (m, 1H), 7.43 (m, 2H), 7.14 (m, 1H), 7.09 (m, 3H), 7.03 (m, 1H), 6.72 (d, J = 9.0 Hz, 2H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 160.15 (J = 246.8 Hz), 150.32, 130.94 (J = 4.4 Hz), 127.75, 127.59, 126.47 (J = 3.8 Hz), 126.00 (J = 11.9 Hz), 125.58, 124.08 (J = 3.4 Hz), 16.32 (J = 3.8 Hz), 115.62 (J = 22.1 Hz), 112.33, 40.41; HRMS (FAB\*, M-nitrobenzylalcohol): Calcd for C<sub>16</sub>H<sub>16</sub>FN: 241.1267. Found: 241.1264 (J = 1.3 ppm deviation).
- **4.1.3.5. 4-N,N-Dimethyl-3'-fluro-stilbene (17).** Yield: 49%; mp 148.9–149.7 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (d, J = 8.8 Hz, 2H), 7.30 (m, 1H), 7.21 (m, 2H), 7.05 (d, J = 16.3 Hz, 1H), 6.89 (m, 2H), 6.72 (d, J = 8.7 Hz, 2H), 3.00 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 163.22 (J = 242.9 Hz), 150.32, 140.63 (J = 7.8 Hz), 130.11, 129.89 (J = 8.5 Hz), 127.75, 125.12, 123.03 (J = 2.4 Hz), 121.89 (J = 2.1 Hz), 113.30 (J = 21.4 Hz), 112.34, 112.02, 40.38; HRMS (FAB<sup>+</sup>, M-nitrobenzylalcohol): Calcd for C<sub>16</sub>H<sub>16</sub>FN: 241.1267. Found: 241.1268 (+0.7 ppm deviation).
- **4.1.3.6. 4-N,N-Dimethyl-4'-fluoro-stilbene (18).** Yield: 17%; mp 198.6–199.5 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (m, 4H), 7.02 (t, J = 8.9 Hz, 2H), 6.91 (d, J = 12.6 Hz, 2H), 6.72 (d, J = 8.7 Hz, 2H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 161.81 (J = 244.2 Hz), 150.15, 134.36 (J = 3.1 Hz), 128.58, 127.51, 127.36 (J = 7.8 Hz), 125.59, 123.18, 115.46 (J = 21.5 Hz), 112.45, 40.48; HRMS (FAB<sup>+</sup>, M-nitrobenzylalcohol): Calcd for C<sub>16</sub>H<sub>16</sub>FN: 241.1267. Found: 241.1261 (J = 2.2 ppm deviation).

- **4.1.3.7. 4-N,N-Dimethyl-2'-bromo-stilbene (19).** Yield: 17%; mp 107.5–108.7 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.65 (dd, J = 1.5 Hz, 7.9 Hz, 1H), 7.56 (dd, J = 1.2 Hz, 8.0 Hz, 1H), 7.46 (d, J = 8.8 Hz, 2H), 7.30 (m, 1H), 7.24 (s, 1H), 7.05 (dt, J = 1.6 Hz, 7.5 Hz, 1H), 6.99 (d, J = 16.1 Hz, 1H), 6.72 (d, J = 8.8 Hz, 2H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 150.37, 137.82, 132.96, 131.50, 127.95, 127.81, 127.41, 126.16, 125.37, 123.70, 122.92, 112.32, 40.41; HRMS (FAB<sup>+</sup>, m-nitrobenzylalcohol): Calcd for C<sub>16</sub>H<sub>16</sub>BrN: 301.0466. Found: 301.0473 (+2.3 ppm deviation).
- **4.1.3.8. 4-***N***,***N***-Dimethyl-3'-bromo-stilbene (20).** Yield: 27%; mp 149.9–150.5 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 (t, J = 7.4 Hz, 1H), 7.41 (m, 2H), 7.31 (m, 2H), 7.18 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 16.2 Hz, 1H), 6.81 (d, J = 16.2 Hz, 1H), 6.71 (m, 2H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 150.29, 140.41, 130.22, 130,01, 129,31, 128.63, 127.76, 125.02, 124.60, 122.78, 122.55, 112.30, 40.37; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for  $C_{16}H_{16}BrN$ : 301.0466. Found: 301.0467 (+0.2 ppm deviation).
- **4.1.3.9. 4-N,N-Dimethyl-4'-bromo-stilbene (21).** Yield: 11%; mp 234.5–235.6 °C;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (m, 1H), 7.42 (m, 2H), 7.39 (m, 1H), 7.34 (m, 1H), 7.31 (m, 1H), 7.03 (d, J = 16.3 Hz, 1H), 6.83 (d, J = 16.3 Hz, 1H), 6.71 (d, J = 8.7 Hz, 2H), 3.00 (s, 6H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 150.22, 137.13, 131.59, 129.51, 127.65, 127.44, 125.26, 122.94, 120.08, 112.36, 40.41; HRMS (FAB $^+$ , m-nitrobenzylalcohol): Calcd for C $_{16}$ H $_{16}$ BrN: 301.0466. Found: 301.0467 (+0.2 ppm deviation).
- **4.1.3.10. 4-N,N-Dimethyl-2'-iodo-stilbene (22).** Yield: 23%; mp 85.6–86.4 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.84 (dd, J = 1.1 Hz, 8.0 Hz, 1H), 7.60 (dd, J = 1.5 Hz, 7.8 Hz, 1H), 7.45 (m, 2H), 7.31 (m, 1H), 7.11 (d, J = 15.9 Hz, 1 Hz), 6.90 (m, 2H), 67.3 (m, 2H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 150.38, 140.99, 139.53, 131.71, 128.29, 128.07, 127.95, 125.72, 125.30, 112.34, 100.22, 40.41; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for C<sub>16</sub>H<sub>16</sub>IN: 349.0327. Found: 349.0333 (+1.6 ppm deviation).
- **4.1.3.11. 4-N,N-Dimethyl-3'-iodo-stilbene (23).** Yield: 32%; mp 161.6–162.2 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.83 (m, 1H), 7.51 (m, 1H), 7.40 (m, 3H), 7.06 (d, J = 7.8 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 6.78 (d, J = 16.2 Hz, 1H), 6.71 (m, 2H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 150.27, 140.49, 135.27, 134.68, 130.17, 130.10, 127.74, 125.17, 125.04, 122.41, 112.29, 94.80, 40.37; HRMS (FAB<sup>+</sup>, m-nitrobenzylalcohol): Calcd for C<sub>16</sub>H<sub>16</sub>IN: 349.0327. Found: 349.0328 (+0.1 ppm deviation).
- **4.1.3.12. 4-N,N-Dimethyl-4'-iodo-stilbene (24).** Yield: 8%; mp 251.6–252.5 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (m, 2H), 7.40 (m, 2H), 7.21 (m, 2H), 7.03 (d, J = 16.3 Hz, 1H), 6.81 (d, J = 16.3 Hz, 1H), 6.71 (m, 2H), 2.99 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 150.27, 137.74, 137.55, 129.62, 127.73, 127.69, 125.20, 123.00, 112.35, 91.35, 40.40; HRMS (FAB<sup>+</sup>, m-nitrobenzylalcohol): Calcd for  $C_{16}H_{16}IN$ : 349.0327. Found: 349.0334 (+2.0 ppm deviation).
- **4.1.3.13. 4-**[*N*-Methyl-*N*-(2-hydroxyethyl)]-2′-iodo-stilbene (25). Yield: 40%;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.86 (m, 1H), 7.83 (m,1H), 7.46 (d, 2H), 7.34 (m,2H), 7.15 (d, J = 16.3 Hz, 1H), 6.90 (m, 2H), 6.76 (m, 2H), 3.83 (m, 2H), 3.51 (m, 2H), 3.01 (s, 1H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 149.75, 140.91, 139.58, 128.43, 128.36, 128.22, 128.09, 125. 89, 125.80, 112.71, 100.30, 60.23, 55.07, 38.92; HRMS (FAB<sup>+</sup>, m-nitrobenzylalcohol): Calcd for  $C_{17}H_{18}INO$ : 379.0433. Found: 349.0438 (+1.3 ppm deviation).
- **4.1.3.14. 4-[***N***-Methyl-***N***-(2-cyanoethyl)]-2'-iodo-stilbene (26). Yield: 42%; mp 66.5-67.5 °C; ^{1}H NMR (300 MHz, CDCl<sub>3</sub>): \delta 7.86**

(m, 1H), 7.60 (m, 1H), 7.44 (m, 2H), 7.39 (d, 2H), 7.33 (t, 1H), 7.18 (d, J = 15.9 Hz, 1H), 6.92 (m, 2H), 6.71 (d, 2H), 3.72 (t, 2H), 3.06 (s, 3H), 2.57 (t, 2H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 147.44, 140.75, 139.62, 131.30, 128.96, 128.44, 128.34, 126.55, 125.89, 118.38, 112.50, 100.38, 48.81, 38.80, 15.38; HRMS (FAB<sup>+</sup>, m-nitrobenzylal-cohol): Calcd for  $C_{18}H_{17}IN_2$ : 388.0436. Found: 388.0443 (+1.6 ppm deviation).

- **4.1.3.15. 4-[N-Methyl-N-(2-hydroxyethyl)]-3**′-iodo-stilbene (**27).** Yield: 37%; mp 108.5–109.5 °C;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (m, 1H), 7.52 (d, 1H), 7.40 (m, 3H), 7.03 (m, 2H), 6.78 (m, 3H), 3.83 (t, 2H), 3.51 (t, 2H), 3.01 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 149.73, 140.43, 135.44, 134.78, 130.22, 129.94, 127.87, 125.71, 125.26, 122.84, 112.69, 94.81, 60.23, 55.06, 38.85; HRMS (FAB⁺, *m*-nitrobenzylalcohol): Calcd for  $C_{17}H_{18}$ INO: 379.0433. Found: 379.0437 (+0.9 ppm deviation).
- **4.1.3.16. 4-[N-Methyl-N-(2-cyanoethyl)]-3'-iodo-stilbene (28).** Yield: 34%; mp 94.6–96.0 °C;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (m, 1H), 7.71 (m, 1H), 7.42 (m, 4H), 7.07 (m, 2H), 6.82 (d, 1H), 6.67 (m, 3H) 3.73 (t, 2H), 3.06 (s, 3H), 2.58 (t, 2H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 147.38, 140.25, 135.62, 132.31, 130.28, 129.68, 128.12, 126.42, 125.36, 123.44, 112.48, 94.85, 48.81, 38.77, 15.39; HRMS (FAB\*, *m*-nitrobenzylalcohol): Calcd for  $C_{18}H_{17}IN_2$ : 388.0436. Found: 388.0432 (–1.1 ppm deviation).
- **4.1.3.17. 4-[N-Methyl-N-(2-hydroxyethyl)]-4**′-iodo-stilbene **(29).** Yield: 31%; mp 201.2–202.8 °C;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 (m, 2H), 7.40 (m, 2H), 7.21 (m, 2H), 7.05 (d, J = 16.2 Hz, 1H), 6.78 (m, 3H), 3.84 (t, 2H), 3.51 (t, 2H), 3.02 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 149.69, 137.64, 137.59, 129.41, 127.80, 127.78, 125.85, 123.40, 112.74, 91.51, 60.25, 55.10, 38.84; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for  $C_{17}$ H<sub>18</sub>INO: 379.0433. Found: 379.0435 (+0.5 ppm deviation).
- **4.1.3.18. 4-[N-Methyl-N-(2-cyanoethyl)]-4'-iodo-stilbene (30).** Yield: 28%; mp 194.8–196.0 °C;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.65 (m, 2H), 7.43 (m, 2H), 7.25 (m, 2H), 7.05 (d, J = 16.3 Hz, 1H), 7.00 (d, 1H), 6.86 (d, 1H), 6.70 (m, 2H), 3.77 (t, 2H), 3.06 (s, 3H), 2.59 (t, 2H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 147.28, 137.63, 137.46, 129.13, 128.03, 127.84, 126.60, 124.04, 118.25, 112.50, 91.75, 48.85, 38,78, 15.36; HRMS (FAB<sup>+</sup>, m-nitrobenzylalcohol): Calcd for  $C_{18}H_{17}IN_2$ : 388.0436. Found: 388.0445 (+2.2 ppm deviation).
- **4.1.3.19. 4-[N-Methyl-N-(2-hydroxyethyl)]-2'-bromo-stilbene (31).** Yield: 42%; mp 87.9–89.0 °C;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.66 (m, 1H), 7.58 (m, 1H), 7.46 (m, 2H), 7.28 (m, 2H), 7.06 (m, 2H), 6.78 (m, 2H), 3.82 (t, 2H), 3.50 (t, 2H), 3.01 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 149.76, 137.77, 133.02, 131.37, 128.11, 127.95, 127.49, 126.25, 123.78, 123.28, 112.68, 60.21, 55.04, 38.90; HRMS (FAB\*, *m*-nitrobenzylalcohol): Calcd for  $C_{17}H_{18}$ BrNO: 331.0572. Found: 331.0573 (+0.5 ppm deviation).
- **4.1.3.20. 4-[N-Methyl-N-(2-cyanoethyl)]-2'-bromo-stilbene (32).** Yield: 38%; mp 73.7–74.9 °C;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 7.66 (m, 1H), 7.63 (m, 1H), 7.49 (m, 2H), 7.28 (m, 2H), 7.09 (m,1H), 6.99 (d, J = 16.3 Hz 1H), 6.71 (m, 2H), 3.75 (t, 2H), 3.07 (s, 3H), 2.59 (t, 2H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 149.70, 137.77, 133.03, 127.19, 125.21, 122.48, 122.28, 121.65, 120.47, 118.15, 117.99, 106.66, 43.02, 32.95, 9.5; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for  $C_{18}H_{17}BrN_2$ : 340.0575. Found: 340.0571 (-1.3 ppm deviation).
- **4.1.3.21. 4-[***N***-Methyl-***N***-(2-hydroxyethyl)**]**-3**′**-bromo-stilbene (33).** Yield: 36%; mp 104.9–105.9 °C;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 (m, 1H), 7.61 (m, 4H), 7.29 (m, 1H), 7.84 (d, J = 16.3 Hz, 1H), 6.78 (m, 3H), 3.83 (t, 2H), 3.52 (t, 2H), 3.01 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 149.76, 140.35, 130.05, 129.47, 128.73,

127.88, 125.71, 124.68, 122.99, 122.84, 112.71, 60.26, 55.08, 38.85; HRMS (FAB $^+$ , *m*-nitrobenzylalcohol): Calcd for  $C_{17}H_{18}BrNO$ : 331.0572. Found: 331.0570 (-0.5 ppm deviation).

- **4.1.3.22. 4-[N-Methyl-N-(2-cyanoethyl)]-3'-bromo-stilbene (34).** Yield: 43%; mp 107.7–108.9 °C;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 (m, 1H), 7.38 (m, 4H), 7.05 (d, 1H), 6.86 (d, J = 16.3 Hz, 1H), 6.70 (m, 2H), 3.74 (t, 2H), 3.06 (s, 3H), 2.59 (t, 2H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 147.39, 130.10, 129.79, 129.65, 128.80, 128.13, 126.43, 124.77, 123.59, 112.48, 48.82, 38.77, 15.38; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for C<sub>18</sub>H<sub>17</sub>BrN<sub>2</sub>: 340.0571. Found: 340.0578 (+0.9 ppm deviation).
- **4.1.3.23. 4-[N-Methyl-N-(2-hydroxyethyl)]-4'-bromo-stilbene (35).** Yield: 36%; mp 183.4–184.9 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 (m, 6H), 6.99 (d, 1H), 6.78 (m, 3H), 3.84 (m, 2H), 3.53 (t, 2H), 3.01 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 149.67, 137.05, 131.64, 129.31, 127.50, 125.91, 123.34, 120.24, 112.75, 60.25, 55.11, 38.84; HRMS (FAB<sup>+</sup>, *m*-nitrobenzylalcohol): Calcd for C<sub>17</sub>H<sub>18</sub>BrNO: 331.0572. Found: 331.0568 (–1.1 ppm deviation).
- **4.1.3.24. 4-[N-Methyl-N-(2-cyanoethyl)]-4'-bromo-stilbene (36).** Yield: 39%; mp 190.4–192.0 °C;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 (m, 6H), 7.04 (d, J = 16.3 Hz, 1H), 6.87 (d, J = 16.3 Hz, 1H), 6.70 (m, 2H), 3.74 (t, 2H), 3.06 (2, 3H), 2.59 (t, 2H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 147.27, 136.88, 131.68, 129.04, 128.00, 127.57, 126.64, 123.96, 120.46, 118.26, 112.52, 48.85, 38.77, 15.36; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for  $C_{18}$ H<sub>17</sub>BrN<sub>2</sub>: 340.0571. Found: 340.0575 (-0.1 ppm deviation).
- **4.1.3.25. 4-[N-Methyl-N-(2-hydroxyethyl)]-2'-methoxy-stilbene (37).** Yield: 30%; mp 78.7–79.8 °C;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.58 (m, 1H), 7.44 (m, 2H), 7.23 (m, 2H), 6.96 (m, 3H), 6.78 (m, 2H), 3.83 (m, 5H), 3.50 (t, 2H), 3.00 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 156.58, 149.39, 129.01, 127.78, 127.70, 127.17, 125.91, 120.73, 119.49, 112.88, 110.91, 60.23, 55.54, 55.28, 38.86; HRMS (FAB<sup>+</sup>, *m*-nitrobenzylalcohol): Calcd for  $C_{18}H_{21}NO_2$ : 283.1572. Found: 283.1567 (-1.9 ppm deviation).
- **4.1.3.26. 4-[N-Methyl-N-(2-hydroxyethyl)]-4'-methoxy-stilbene (38).** Yield: 36%; mp 153.4–154.9 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 (m, 4H), 6.82 (m, 6H), 3.82 (m, 5H), 3.56 (t, 2H), 2.99 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 158.72, 149.30, 130.90, 127.35, 127.18, 126.85, 126.56, 124.42, 114.07, 112.97, 60.23, 55.29, 38.84; HRMS (FAB<sup>+</sup>, *m*-nitrobenzylalcohol): Calcd for C<sub>18</sub>H<sub>21</sub>NO<sub>2</sub>: 283.1572. Found: 283.1579 (+2.5 ppm deviation).
- **4.1.3.27. 4-[N-Methyl-N-(2-hydroxyethyl)]-2'-fluoro-stilbene (39).** Yield: 48%; mp 95.2–96.5 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.60 (m, 1H), 7.43 (m, 2H), 7.10 (m, 5H), 6.80 (m, 2H), 3.82 (m, 2H), 3.51 (t, 2H), 3.01 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 158.52 (J = 987.9 Hz), 149.70, 130.72 (J = 17.7 Hz), 127.87, 127.84 (J = 34.8 Hz), 126.51 (J = 80.7 Hz), 125.85 (J = 48.3 Hz), 124.06 (J = 13.8 Hz), 116.75 (J = 15.3 Hz), 115.52 (J = 88.2 Hz), 112.73, 60.24, 55.11, 38.86; HRMS (FAB\*, m-nitrobenzylalcohol): Calcd for C<sub>17</sub>H<sub>18</sub>FNO: 271.1372. Found: 271.1373 (+0.1 ppm deviation).
- **4.1.3.28. 4-[N-Methyl-N-(2-cyanoethyl)]-2'-fluoro-stilbene (40).** Yield: 40%; mp 65.8–67.0 °C;  $^1$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.61 (m, 1H), 7.47 (m, 2H), 7.09 (m, 5H), 6.71 (m, 2H), 3.77 (t, 2H), 3.07 (s, 3H), 2.59 (t, 2H),  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 158.52 (J = 247.1 Hz), 147.28, 130.49 (J = 4.5 Hz), 128.11 (J = 4.5 Hz), 127.94, 126.95, 126.62 (J = 9.0 Hz), 125.82 (J = 11.3 Hz), 124.14 (J = 3.45 Hz), 118.29, 117.39 (J = 3.75 Hz), 115.85 (J = 22.1 Hz), 112.48, 48.86, 38.79, 15.34; HRMS (FAB\*, M-nitrobenzylalcohol): Calcd for C<sub>18</sub>H<sub>17</sub>FN<sub>2</sub>: 280.1376. Found: 280.1382 (+2.2 ppm deviation).

# **4.1.3.29. 4-[N-Methyl-N-(2-hydroxyethyl)]-4'-fluoro-stilbene (41).** Yield: 42%; mp 111.3–112.2 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): $\delta$ 7.42 (m, 4H), 7.05 (m,1H), 6.92 (d, 2H), 6.71 (d, 2H), 3.74 (t, 2H), 3.06 (s, 3H), 2.54 (t, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 160.32 (*J* = 978.9 Hz), 147.09, 134.04 (*J* = 12.9 Hz), 128.09, 127.83, 127.54 (*J* = 31.2 Hz), 126.90, 124.14, 118.30, 115.66 (*J* = 86.1 Hz), 112.55, 48.89, 38.77, 15.33; HRMS (FAB<sup>+</sup>, *m*-nitrobenzylalcohol): Calcd for C<sub>18</sub>H<sub>17</sub>FN<sub>2</sub>: 280.1376. Found: 280.1375 (–0.1 ppm deviation).

**4.1.3.30. 4-***N***-Methyl-4'-bromo-stilbene (42).** Yield: 23%; mp 214.3–215.8 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (m, 6H), 7.03 (d, J = 16.3 Hz, 1H), 6.84 (d, J = 16.3 Hz, 1H), 6.60 (m, 2H), 3.81 (bs, 1H), 2.86 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 149.22, 137.12, 131.63, 129.63, 128.02, 127.84, 127.48, 126.24, 123.0, 120.17, 112.43, 30.62; HRMS (FAB<sup>+</sup>, m-nitrobenzylalcohol): Calcd for C<sub>15</sub>H<sub>14</sub>BrN: 287.0310. Found: 280.0313 (+1.3 ppm deviation).

**4.1.3.31. 4-N-Methyl-2**′-**methoxy-stilbene (43).** Yield: 24%; mp 87.9–89.3 °C; ¹H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (m, 3H), 7.27 (m, 3H), 6.88 (m, 2H), 6.53 (m, 2H), 3.83 (s, 3H), 2.80 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 159.87, 149.08, 139.64, 129.53, 129.23, 127.81, 126.54, 124.25, 118.81, 112.44, 111.21, 55.24, 30.66; HRMS (FAB⁺, *m*-nitrobenzylalcohol): Calcd for C<sub>15</sub>H<sub>14</sub>BrN: 239.1310. Found: 239.1314 (+1.5 ppm deviation).

**4.1.3.32. 4-N-Methyl-3**′-**methoxy-stilbene (44).** Yield: 20%; mp 62.8–63.9 °C;  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 (m, 3H), 7.25 (m, 3H), 6.90 (m, 2H), 6.61 (m, 2H), 3.84 (s, 3H), 2.86 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>): 159.87, 149.08, 139.64, 129.53, 129.23, 127.81, 126.54, 124.25, 118.81, 112.44, 111.21, 55.24, 30.66; HRMS (FAB\*, *m*-nitrobenzylalcohol): Calcd for  $C_{15}H_{14}BrN$ : 239.1310. Found: 239.1309 (-0.5 ppm deviation).

#### 4.2. Biological procedures

#### 4.2.1. General method for preparation of Aβ40 fibrils

Purified A $\beta$ 40 peptides were dissolved in phosphate-buffered saline (PBS, pH 7.4) to make a final concentration of 200  $\mu$ M. The solution was incubated at 37 °C with gentle shaking for 48 h. The formation of A $\beta$  fibril was confirmed by ThT assay. A $\beta$ 40 were prepared as previously reported method. <sup>18</sup>

#### 4.2.2. Fluorescence spectra measurement

Excitation and emission  $\lambda_{max}$  of each compound were measured with a SpectraMax M2 (Molecular Devices). Final concentrations of 10–50  $\mu$ M of A $\beta$ 40 fibril in PBS buffer solution were used in the experiments. Generally, the  $\lambda_{max}$  of emission was determined by scanning a fixed excitation first, and the  $\lambda_{max}$  of excitation was determined by scanning emission spectrum with a fixed  $\lambda_{em}$ . Detail protocols were reported in elsewhere. <sup>19</sup>

#### 4.2.3. Measurement of binding affinity $(K_D)$

Aβ40 fibrils of 50 μM concentration solution were titrated by a series concentration of compounds **42**, **44**, **33**, **35** and ThT. A nonlinear regression analysis was performed in GraphPad Prism fitting a one-site binding model to the binding data. The dissociation constants ( $K_D$ ) were obtained from the best-fitted curve of each tested compound.

#### 4.2.4. Imaging of AD mouse brain

Brain sections of Tg2576 mice were stained with compound **42** (1  $\mu$ M) and ThT (5  $\mu$ M) in PBS (Phosphate Buffered Saline). After 30 min of incubation, the brain sections were washed with PBS and imaged using a Nikon Ti microscope.

#### Acknowledgements

This study was supported by Korea Science and Engineering Foundation (KOSEF) (M20702010001-07N0201-00110) and Ministry of Science and Technology (MOST), Republic of Korea, through its National Nuclear Technology Program. Also this work was supported by and intramural funding from A\*STAR Biomedical Research Council and National University of Singapore Young Investigator Award (R-143-000-353-123). J.-S. Lee thanks for the generous support of the POSCO TJ Park Foundation (TJ Park Bessemer Science Fellowship).

#### Supplementary data

Supplementary data (Detail NMR characterizations of all compounds) associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2010.06.044.

#### References and notes

- Vickers, J. C.; Dickson, T. C.; Adlard, P. A.; Saunders, H. L.; King, C. E.; McCormack, G. Prog. Neurobiol. 2000, 60, 139.
- Xia, W.; Ray, W. J.; Ostaszewski, B. L.; Rahmati, T.; Kimberly, W. T.; Wolfe, M. S.; Zhang, J.; Goate, A. M.; Selkoe, D. J. Proc. Natl Acad. Sci. U.S.A. 2000, 97, 9299.
- 3. Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
- 4. Selkoe, D. J. Nature Biotechnol. 2000, 18, 823.
- Mathis, C. A.; Wang, Y.; Holt, D. P.; Huang, G.-F.; Debnath, M. L.; Klunk, W. E. J. Med. Chem. 2003, 46, 2740.
- Kung, H. F.; Lee, C.-W.; Zhuang, Z.-P.; Kung, M.-P.; Hou, C.; Plossl, K. J. Am. Chem. Soc. 2001. 123. 12740.
- (a) Wilson, A.; Nobrega, J.; Houle, S.; Westaway, D.; Verhoeff, N. P.; Zhuang, Z.; Kung, M.-P.; Ono, M.; Kung, H. F. J. Labelled Compd. Radiopharm. 2003, 46, S61;
  (b) Ono, M.; Wilson, A.; Nobrega, J.; Westaway, D.; Verhoeff, P.; Zhuang, Z.-P.; Kung, M.-P.; Kung, H. F. Nucl. Med. Biol. 2003, 30, 565;
  (c) Kung, M.-P.; Hou, C.; Zhuang, Z.-P.; Skovronsky, D.; Kung, H. F. Brain Res. 2004, 1025, 98.
- Klunk, W.; Mathis, C.; Wang, Y.; Huang, G.; Holt, D.; Debnath, M.; Engler, H.; Nordberg, A.; Blomqvist, G.; Bergstrm, M.; Estrada, S.; Barletta, J.; Sandell, J.; Antoni, G.; Lngstrm, B. 32nd Annual Meeting of Society for Neuroscience, 2002.
- Agdeppa, E. D.; Kepe, V.; Shoghi-Jadid, K.; Satyamurthy, N.; Small, G. W.; Petric, A.; Vinters, H. V.; Huang, S. C.; Barrio, J. R. J. Nucl. Med. 2001, 42, 65P.
- 10. Lee, C.-W.; Kung, M.-P.; Hou, C.; Kung, H. F. *Nucl. Med. Biol.* **2003**, 30, 573.
- 11. Kung, H. F. J. Nucl. Med. 2002, 43, 166P.
- Shoghi-Jadid, K.; Small, G. W.; Agdeppa, E. D.; Kepe, V.; Ercoli, L. M.; Siddarth, P.; Read, S.; Satyamurthy, N.; Petric, A.; Huang, S. C.; Barrio, J. R.; Liu, J.; Flores-Torres, S.; Cole, G. M. Am. J. Geriatr. Psychiatry 2002, 10, 24.
- Zhuang, Z.-P.; Kung, M.-P.; Hou, C.; Skovronsky, D.; Gur, T. L.; Trojanowski, J. Q.; Lee, V. M.-Y.; Kung, H. F. J. Med. Chem. 2001, 44, 1905.
- Zhuang, Z. P.; Kung, M.-P.; Wilson, A.; Lee, C.-W.; Plossl, K.; Hou, C.; Holtzman, D. M.; Kung, H. F. J. Med. Chem. 2003, 46, 237.
- Gao, M.; Wang, M.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D.; Zheng, Q.-H. Bioorg. Med. Chem. Lett. 2006, 16, 5767.
- (a) Ono, M.; Haratake, M.; Nakayama, M.; Kaneko, Y.; Kawabata, K.; Mori, H.; Kung, M.-P.; Kung, H. F. *Nucl. Med. Biol.* **2005**, 32, 329; (b) Verhoeff, N. P.; Wilson, A. A.; Takeshita, S.; Trop, L.; Hussey, D.; Singh, K.; Kung, H. F.; Kung, M. P.; Houle, S. *Am. J. Geriatr. Psychiatry* **2004**, 12(6), 584.
- 17. Jang, S.-R.; Lee, C.; Choi, H.; Ko, J. J.; Lee, J.; Vittal, R.; Kim, K.-J. Chem. Mater. 2006, 18(23), 5604
- 18. Kim, Y.; Moss, J. A.; Janda, K. D. J. Org. Chem. 2004, 69(22), 7776.
- Li, Q.; Lee, J. S.; Ha, C.; Park, C. B.; Yang, G.; Gan, W. B.; Chang, Y. T. Angew. Chem., Int. Ed. 2004, 43(46), 6331.